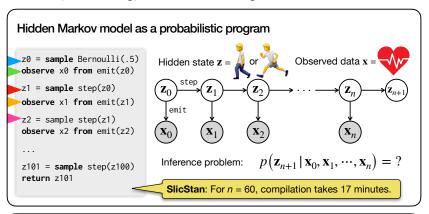
Compiling Probabilistic Programs

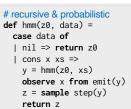
for Variable Elimination with Information Flow

Jianlin Li, Eric Wang, and Yizhou Zhang

DAVID R. CHERITON SCHOOL



Our Approach



recursive & pure def hmm(k, z0, data) = case data of | nil => k(z0)| cons x xs => let k' y = emit(y).p(x) * $\Sigma_z(\text{step(y).p(z)} * k(z))$ **in** hmm(k', z0, xs)

Easy modeling

Correct compilation Scalable compilation

Scalable inference

Marginalization by enumeration: $O(2^n)$ time complexity

$$\begin{split} & p\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \cdots, \mathbf{x}_{n}, \mathbf{z}_{n+1}\right) &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \cdots \sum_{\mathbf{z}_{n}} p\left(\mathbf{z}_{0}, \mathbf{x}_{0}, \mathbf{z}_{1}, \mathbf{x}_{1}, \cdots, \mathbf{z}_{n}, \mathbf{x}_{n}, \mathbf{z}_{n+1}\right) \\ &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \cdots \sum_{\mathbf{z}_{n}} p\left(\mathbf{z}_{0}\right) p\left(\mathbf{x}_{0} \mid \mathbf{z}_{0}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{0}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) \cdots p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\ &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \cdots \sum_{\mathbf{z}_{n}} p\left(\mathbf{z}_{0}\right) p\left(\mathbf{x}_{0} \mid \mathbf{z}_{0}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{0}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) \cdots p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\ &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \cdots \sum_{\mathbf{z}_{n}} p\left(\mathbf{z}_{0}\right) p\left(\mathbf{x}_{0} \mid \mathbf{z}_{0}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{0}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) \cdots p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\ &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \cdots \sum_{\mathbf{z}_{n}} p\left(\mathbf{z}_{0} \mid \mathbf{z}_{0}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{0}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) \cdots p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\ &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \cdots \sum_{\mathbf{z}_{n}} p\left(\mathbf{z}_{0} \mid \mathbf{z}_{0}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{0}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) \cdots p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\ &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \cdots \sum_{\mathbf{z}_{n}} p\left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) \cdots p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \\ &= \sum_{\mathbf{z}_{0}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{1}} \sum_{\mathbf{z}_{2}} \left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{2} \mid \mathbf{z}_{1}\right) p\left(\mathbf{z}_{1} \mid \mathbf{z}_{1}\right) p\left($$

Marginalization by factorization & variable elimination: O(n) time

$$p\left(\mathbf{x}_{0},\mathbf{x}_{1},\cdots,\mathbf{x}_{n},\mathbf{z}_{n+1}\right) = \sum_{\mathbf{z}_{n}} \left(p(\mathbf{z}_{n+1} \,|\, \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} \left(\cdots \sum_{\mathbf{z}_{1}} \left(p(\mathbf{x}_{1} \,|\, \mathbf{z}_{1}) \, p(\mathbf{z}_{2} \,|\, \mathbf{z}_{1}) \sum_{\mathbf{z}_{0}} p(\mathbf{z}_{0}) \, p(\mathbf{x}_{0} \,|\, \mathbf{z}_{0}) \, p(\mathbf{z}_{1} \,|\, \mathbf{z}_{0}) \right) \cdots \right) \right)$$

$$\underbrace{ \text{table of } 2^{2} \text{ rows} }$$

Factorization as program partitioning via information-flow typing

Variable elimination amounts to incrementally compiling away probabilistic effects. partition over Zo H > z0 = sample Bernoulli(.5)observe x0 from emit(z0) H

L > z1 = sample step(z0)observe x1 from emit(z1) L > z2 = sample step(z1)observe x2 from emit(z2)

L > z101 = sample step(z100) L

probabilistic High partition z0 = sample Bernoulli(.5) observe x0 from emit(z0) z1 = sample step(z0)

observe x1 from emit(z1) z2 = sample step(z1)observe x2 from emit(z2)

z101 = sample step(z100)

Low partition

Doesn't information flow from step(z0) to z1?

Crucial for program partitioning

Information flows from step(z0) to the distribution over z1's values.

But z1's value in an execution trace contributes zero information to the semantics of the program.

Information-flow typing of distributions

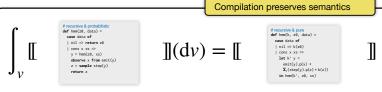
Typing rule for variable bindings in a usual information-flow type $[t_1]$ is a distribution, and l_1 classifies $[t_1]$

Typing rule for variable bindings $\Gamma \vdash t_1 : \tau_1^{l_1} \qquad \Gamma, x : \tau_1^{l_2} \vdash t_2 : \tau_2^{l_2}$ Distribution [[let $x = t_1$ in t_2]] is obtained by marginalizing out x w.r.t.[[t_1]]

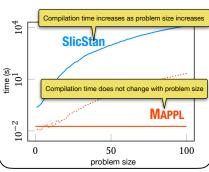
Soundness of information-flow typing via a logical-relations argument

Low-labeled computation behaves irrespective of high-labeled input Noninterference $x: \tau^{\biguplus} t: \tau'^{\sqsubseteq} \Longrightarrow \left[f(u) \llbracket t \rrbracket_{x \mapsto v_1} (\mathrm{d}u) = \left[f(u) \llbracket t \rrbracket_{x \mapsto v_2} (\mathrm{d}u) \right] \right]$

Compiler correctness



Scalability of compilation



Scalability of exact inference

