Jan Friso Groote

Kim Guldstrand Larsen (Eds.)

ARCoSS

Tools and Algorithms
for the Construction
and Analysis of Systems

27th International Conference, TACAS 2021
Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2021
Luxembourg City, Luxembourg, March 27 - April 1, 2021
Proceedings, Part |

][Panl

-

EUROP!A-N-&GINT GONFERENCES ON
THEORY & PRACTICE OF SOFTWARE y

LNCS 12651

t')

Check for
updates

Improving Neural Network Verification through
Spurious Region Guided Refinement

Pengfei Yang!2(®, Renjue Li'-2@®, Jianlin Li*2®, Cheng-Chao Huang?*®,
Jingyi Wang®®, Jun Sun®®, Bai Xue!2®, and Lijun Zhang"?3® (=)

! SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Institute of Intelligent Software, Guangzhou, China
4 CAS Software Testing (Guangzhou) Co., Ltd., Guangzhou, China
5 Zhejiang University NGICS Platform, Hangzhou, China
6 Singapore Management University, Singapore, Singapore
zhanglj@ios.ac.cn

Abstract. We propose a spurious region guided refinement approach for robust-
ness verification of deep neural networks. Our method starts with applying the
DeepPoly abstract domain to analyze the network. If the robustness property can-
not be verified, the result is inconclusive. Due to the over-approximation, the
computed region in the abstraction may be spurious in the sense that it does not
contain any true counterexample. Our goal is to identify such spurious regions
and use them to guide the abstraction refinement. The core idea is to make use of
the obtained constraints of the abstraction to infer new bounds for the neurons.
This is achieved by linear programming techniques. With the new bounds, we
iteratively apply DeepPoly, aiming to eliminate spurious regions. We have im-
plemented our approach in a prototypical tool DeepSRGR. Experimental results
show that a large amount of regions can be identified as spurious, and as a result,
the precision of DeepPoly can be significantly improved. As a side contribution,
we show that our approach can be applied to verify quantitative robustness prop-
erties.

1 Introduction

In the seminal work [34], deep neural networks (DNN) have been successfully applied
in Go to play against expert humans. Afterwards, they have achieved exceptional per-
formance in many other applications such as image, speech and audio recognition, self-
driving cars, and malware detection. Despite the success of solving these problems,
DNNs have also been shown to be often lack of robustness, and are vulnerable to ad-
versarial samples [39]. Even for a well-trained DNN, a small (and even imperceptible)
perturbation may fool the network. This is arguably one of the major obstacles when
we deploy DNNS in safety-critical applications like self-driving cars [42], and medical
systems [33].

It is thus important to guarantee the robustness of DNNs for safety-critical appli-
cations. In this work, we focus on (local) robustness, i.e., given an input and a ma-
nipulation region around the input (which is usually specified according to a certain

© The Author(s) 2021
J. E. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12651, pp. 389408, 2021.
https://doi.org/10.1007/978-3-030-72016-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72016-2_21&domain=pdf
http://orcid.org/0000-0003-4114-7757
http://orcid.org/0000-0003-2472-0021
http://orcid.org/0000-0001-7371-3034
http://orcid.org/0000-0002-9693-8778
http://orcid.org/0000-0001-7113-7635
http://orcid.org/0000-0002-3545-1392
http://orcid.org/0000-0001-9717-846X
http://orcid.org/0000-0002-3692-2088
https://doi.org/10.1007/978-3-030-72016-2_21

390 P. Yang et al.

norm), we verify that a given DNN never makes any mistake on any input in the region.
The first work on DNN verification was published in [30], which focuses on DNNs
with sigmoid activation functions with a partition-refinement approach. In 2017, Katz
et al. [20] and Ehlers [10] independently implemented Reluplex and Planet, two SMT
solvers to verify DNNs with the ReLLU activation function on properties expressible
with SMT constraints. Since 2018, abstract interpretation has been one of the most pop-
ular methods for DNN verification in the lead of AI? [13], and subsequent works like
[36,37,23,1,35,28,24] have improved AIZ in terms of efficiency, precision and more ac-
tivation functions (like sigmoid and tanh) so that abstract interpretation based approach
can be applied to DNNSs of larger size and more complex structures.

Among the above methods, DeepPoly [37] is a most outstanding one regarding
precision and scalability. DeepPoly is an abstract domain specially developed for DNN
verification. It sufficiently considers the structures and the operators of a DNN, and
it designs a polytope expression which not only fits for these structures and operators
to control the loss of precision, but also works with a very small time overhead to
achieve scalability. However, as an abstraction interpretation based method, it provides
very little insight if it fails to verify the property. In this work, we propose a method
to improve DeepPoly by eliminating spurious regions through abstraction refinement.
A spurious region is a region computed using abstract semantics, conjuncted with the
negation of the property to be verified. This region is spurious in the sense that if the
property is satisfied, then this region, although not empty, does not contain any true
counterexample which can be realized in the original program. In this case, we propose
a refinement strategy to rule out the spurious region, i.e., to prove that this region does
not contain any true counterexamples.

Our approach is based on DeepPoly and improves it by refinement of the spuri-
ous region through linear programming. The core idea is to intersect the abstraction
constructed by abstract interpretation with the negation of the property to generate a
spurious region, and perform linear programming on the constraints of the spurious re-
gion so that the bounds of the ReLLU neurons whose behaviors are uncertain can be
tightened. As a result, some of these neurons can be determined to be definitely acti-
vated or deactivated, which significantly improves the precision of the abstraction given
by abstract interpretation. This procedure can be performed iteratively and the precision
of the abstraction are gradually improved, so that we are likely to rule out this spurious
region in some iteration. If we successfully rule out all the possible spurious regions
through such an iterative refinement, the property is soundly verified. Our method is
similar in spirit to counterexample guided abstraction refinement (CEGAR) [6], i.e.,
we apply abstract interpretation for abstraction and linear programming for refinement.
A fundamental difference is that we use the constraints of the spurious region, instead
of a concrete counterexample (which is challenging to construct in our setting), as the
guidance of refinement.

The same spurious region guided refinement approach is also effective in quanti-
tative robustness verification. Instead of requiring that all inputs in the region should
be correctly classified, a certain probability of error in the region is allowed. Quantita-
tive robustness is more realistic and general compared to the ordinary robustness, and a
DNN verified against quantitative robustness is useful in practice as well. The spurious

Improving Neural Network Verification through Spurious Region Guided Refinement 391

region guided refinement approach naturally fits for this setting, since a comparatively
precise over-approximation of the spurious region implies a sound robustness confi-
dence. To the best of our knowledge, for DNN:ss, this is the first work to verify quantita-
tive robustness with strict soundness guarantee, which distinguishes our approach from
the previous sampling based methods like [45,46,3].

In summary, our main contributions are as follows:

— We propose spurious region guided refinement to verify robustness properties of
deep neural networks. This approach significantly improves the precision of Deep-
Poly and it can verify more challenging properties than DeepPoly.

— We implement the algorithms as a prototype and run them on networks trained on
popular datasets like MNIST and ACAS Xu. The experimental results show that our
approach significantly improves the precision of DeepPoly in successfully verifying
much stronger robustness properties (larger maximum radius) and determining the
behaviors of a great proportion of uncertain ReLU neurons.

— We apply our approach to solve quantitative robustness verification problem with
strict soundness guarantee. In the experiments, we observe that, comparing to using
only DeepPoly, the bounds by our approach can be up to two orders of magnitudes
better in the experiments.

Organisations of the paper. We provide preliminaries in Section 2. DeepPoly is recalled
in Section 3. We present our overall verification framework and the algorithm in Sec-
tion 4, and discuss quantitative robustness verification in Section 5. Section 6 evaluates
our algorithms through experiments. Section 7 reviews related works and concludes the

paper.

2 Preliminaries

In this section we recall some basic notions on deep neural networks, local robustness
verification, and abstract interpretation. Given a vector x € R™, we write x; to denote
its ¢-th entry for 1 <7 < m.

2.1 Robustness verification of deep neural networks

In this work, we focus on deep feedforward neural networks (DNNs), which can be
represented as a function f : R™ — R™, mapping an input x € R™ to its output y =
f(xz) € R™. ADNN f often classifies an input by obtaining the maximum dimension
of the output, i.e., arg max;<;<n f(z);. We denote such a DNN by C; : R™ — C
which is defined by C'y(x) = arg maxi<;<, f(z); where C = {1,...,n} is the set of
classification classes.

A DNN has a sequence of layers, including an input layer at the beginning, followed
by several hidden layers, and an output layer in the end. The output of a layer is the input
of the next layer. Each layer contains multiple neurons, the number of which is known
as the dimension of the layer. The DNN f is the composition of the transformations
between layers. Typically an affine transformation followed by a non-linear activation
function is performed. For an affine transformation y = Ax + b, if the matrix A is not

392 P. Yang et al.

sparse, we call such a layer fully connected. A DNN with only fully connected layers
and activation functions is a fully connected neural network (FNN). In this work, we
focus on the rectified linear unit (ReLU) activation function, defined as ReLU(x) =
max(z,0) for x € R. Typically, a DNN verification problem is defined as follows:

Definition 1. Given a DNN f : R™ — R"™, a set of inputs X C R™, and a property
P C R", we need to determine whether f(X) :={f(z) | x € X} C P holds.

Local robustness describes the stability of the behaviour of a normal input under a
perturbation. The range of input under this perturbation is the robustness region. For a
DNN C' () which performs classification tasks, a robustness property typically states
that C'y outputs the same class on the robustness region.

There are various ways to define a robustness region, and one of the most popular
ways is to use the L, norm. For x € R™ and 1 < p < oo, we define the L, norm of

ztobe |z], = (XL, |xl|p)% , and its Lo, norm ||z ||cc = max;<;<m, |2;|. We write
By(x,r) = {2’ € R™ | |z —2'||, < r} torepresent a (closed) L, ball for x € R™ and
r > 0, which is a neighbourhood of x as its robustness region. If we set X = B,,(x,r)
and P = {y € R" | argmax; y; = Cy(x)} in Def. 1, it is exactly the robustness
verification problem. Hereafter, we set p = oc.

2.2 Abstract interpretation for DNN verification

Abstract interpretation [7] is a static analysis method and it is aimed to find an over-
approximation of the semantics of programs and other complex systems so as to verify
their correctness. Generally we have a function f : R™ — R™ representing the concrete
program, a set X C R™ representing the property that the input of the program satisfies,
and a set P C R” representing the property to verify. The problem is to determine
whether f(X) C P holds. However, in many cases it is difficult to calculate f(X) and
to determine whether f(X) C P holds. Abstract interpretation uses abstract domains
and abstract transformations to over-approximate sets and functions so that an over-
approximation of the output can be obtained efficiently.

Now we have a concrete domain C, which includes X as one of its elements. To
make computation efficient, we need an abstract domain .4 to abstract elements in the
concrete domain. We assume that there is a partial order < on C and .4, which in our
settings is the subset relation C. We also have a concretization function v : A — C
which assigns an abstract element to its concrete semantics, and y(a) is the least upper
bounds of the concrete elements that can be soundly abstracted by a € A. Naturally
a € Ais asound abstraction of ¢ € C if and only if ¢ < y(a).

The design of an abstract domain is one of the most important problems in abstract
interpretation because it determines the efficiency and precision. In practice, we use
a certain type of constraints to represent the abstract elements in an abstract domain.
Classical abstract domains for Euclidean spaces include Box, Zonotope [14,15], and
Polyhedra [38].

Not only do we need abstract domains to over-approximate sets, but we are also
required to adopt over-approximation to functions. Here we consider the lifting of the
function f : R™ — R” defined as Ty(X) : P(R™) — P(R"), T§(X) = f(X) =

Improving Neural Network Verification through Spurious Region Guided Refinement 393

{f(z) | € X}. Now we have an abstract domain A, for the k-dimension Euclidean
space and the corresponding concretization . A function T}# : Ay — A, is a sound

abstract transformer of T, if Ty oy C vy o Tf# .

When we have a sound abstraction X# € A of X and a sound abstract transformer
TJ# , we can use the concretization of TJ# (X#) to over-approximate f(X) since we
have f(X) = Ty(X) C Ty(v(X#)) €y o TF (X#).1f v o T} (X#) C P, the prop-
erty P is successfully verified. Obviously, verification through abstract interpretation is
sound but not complete. Hereafter, we write f# to represent Tf for simplicity.

AI? [13] first adopted abstract interpretation to verify DNNs, and many subsequent
works like [36,37,23] focused on improving its efficiency and precision through, e.g.,
defining new abstract domains. As a deep neural network, the function f : R™ — R"
can be regarded as a composition f = f;o---o f; of its [4+ 1 layers, where f; performs
the transformation between the j-th and the (j + 1)-th layer, i.e., it can be an affine
transformation, or a ReLLU operation. If we choose Box, Zonotope, or Polyhedra as the
abstract domain, then for linear transformations and the ReLLU functions, their abstract
transformers have been developed in [13]. After we have abstract transformers f]# for

these f;, we can conduct abstract interpretation layer by layer as fl# 0---0 f1# (X7#).

3 A Brief Introduction to DeepPoly

Our approach relies on the abstract domain DeepPoly [37], which is the state-of-the-art
abstract domain for DNN verification. It defines the abstract transformers of multiple
activation functions and layers used in DNNs. The core idea of DeepPoly is to give
every variable an upper and a lower bound in the form of an affine expression using
only variables that appear before it. It can express a polyhedron globally. Moreover,
experimentally, it often has better precision than Box and Zonotope domains.

We denote the n-dimensional DeepPoly abstract domain with A,,. Formally an ab-
stract element a € A,, is a tuple (a=,a=, [, u), where a= and a= give the i-th variable
x; a lower bound and an upper bound, respectlvely, in the form of a linear combina-
tion of variables which appear before it, i.e. Z o 1 wrxE + wo, fore = 1,...,n, and
l,u € R™ give the lower bound and upper bound of each variable, respectlvely. The
concretization of a is defined as

v(a)={z €R" |af <z;<a7, i=1,...,n}.)

The abstract domain .A,, also requests that its abstract elements a should satisfy the
invariant v(a) C [I,u]. This invariant helps construct efficient abstract transformers.
For an affine transformation z; = Z e 1 WETE + wp, We set

1
= WETE + wo.
1

-
|

<_ >
a; = a;

B
Il

By substituting the variables x; appearing in a? with ajS or aj2 according to its coef-
ficient at most 7 — 1 times, we can obtain a sound lower bound in the form of linear

394 P. Yang et al.

“verified”
constraints building
’—‘ - DeepPoly gerenating
« spurious region guided
t
network —— .
DeepPoly _ LP solv_mg _
property . «input & uncertain ReLU
'
renewing bounds B Y
& ReLU behaviors | —— “unknown
« guiding DeepPoly
L— abstraction —— refinement

Fig. 1. Framework of spurious region guided refinement

combination on input variables only, and /; can be computed immediately from the
range of input variables. A similar procedure also works for computing ;.
For a ReLU transformation x; = ReLU(z,), we consider two cases:

- Ifl; > 0 orwu; < 0,this ReLU neuron is definitely activated or deactivated,
respectively. In this case, this ReLU transformation actually performs an affine
transformation, and thus its abstract transformer can be defined as above.

- If I; < 0 and u; > 0, the behavior of this ReLU neuron is uncertain, and we
need to over-approximate this relation with a linear upper/lower bound. The best

upper bound is a? = %L_;lj) For the lower bound, there are multiple choices
J J

as = Az where \ € [0, 1]. We choose A € {0, 1} which minimizes the area of the
constraints. Basically we have two abstraction modes here, corresponding to the
two choices of \.

Note that for a DNN with only ReLU as non-linear operators, over-approximation oc-
curs only when there are uncertain ReLU neurons, which are over-approximated using
a triangle. The key of improving the precision is thus to compute the bounds of the
uncertain ReLLU neurons as precisely as possible, and to determine the behaviors of the
most uncertain ReLU neurons.

DeepPoly also supports activation functions which are monotonically increasing,
convex on (—oo, 0] and concave on [0, +00), like sigmoid and tanh, and it supports
max pooling layers. Readers can refer to [37] for details.

4 Spurious Region Guided Refinement

We explain the main steps of our algorithm, as depicted in Fig. 1. For the input property
and network, we first employ DeepPoly as the initial step to compute f#(X#). The
concretization of f#(X7#) is the conjunction of many linear inequities given in Eq. 1,
and for the robustness property P, the negation —P is the disjunction of several linear

inequities =P = \/, ¢, (o) (Yo, (o) — y¢ < 0).

Improving Neural Network Verification through Spurious Region Guided Refinement 395

1. We check whether f#(X#) N# (Yc;(x) — Yyt < 0) = L holds for each ¢, which
follows the same method as DeepPoly, i.e., we compute the lower bound of y¢ (x) —
y: and see whether it is larger than 0. In case of yes, it indicates that the label ¢
cannot be classified, as it is dominated by C(z). Otherwise, we have f# (X#)N#
—P # 1, we have the conjunction (7 (X)) A—P as a potential spurious region,
which represents the intersection of the abstraction of the real semantics and the
negation of the property to verify. We call such a region spurious because if the
property is satisfied, then this region does not contain a true counterexample, i.e., a
pair of input and output (2*, y*) such that y* = f(2*) and y* violates the property
P. In this case, this region is spuriously constructed due to the abstraction of the
real semantics, where the counterexamples cannot be realized, and thus we aim to
rule out the spurious region.

2. If no potential spurious region is found, our algorithm safely returns yes.

3. Assume now that we have a the potential spurious region. The core idea is to use
the constraints of the spurious region to refine this spurious region. Here a natural
way to refine the spurious region is linear programming, since all the constraints
here are linear inequities. If the linear programming is infeasible, it indicates that
the region is spurious, and thus we can return an affirmative result. Otherwise, our
refinement will tighten the bounds of variables involved in the DNN, especially
the input variables and uncertain ReLLU neurons, and these tightened bounds help
further give a more precise abstraction.

4. As our approach is based on DeepPoly, similarly, we cannot guarantee complete-
ness. We set a threshold N of the number of iterations as a simple termination
condition. If the termination condition is not reached, we run DeepPoly again, and
return to the first step.

Below we give an example, illustrating how refinement can help in robustness veri-
fication.

11
gion B..((0,0)T,1). The robustness property P here is yo — 31 > 0. We invoke first
DeepPoly: the lower bound of y5 — y1 given by DeepPoly is —0.5. As a result, the
robustness property cannot be verified directly. Fig. 2(a) shows details of the example.

Example 1. Consider the network f(x) = ReLU ((1 _1> x+ <205)) and the re-

We fail to verify the property in Example 1 because for the uncertain ReLLU relation
y1 = ReLU(xs), the abstraction is imprecise, and the key to making the abstraction
more precise here is to obtain as tight a bound as possible for x3.

Example 2. We use the constraints in Fig. 2(a) and additionally the constraint o —y; <
0 (i.e., =P) as the input of linear programming. Our aim is to obtain a tighter bound of
the input neurons x; and x5, as well as the uncertain ReLLU neuron z3, so the objective
functions of the linear programming are min x; and min —z; for ¢ = 1,2, 3. All the
three neurons have a tighter bound after the linear programming (see the red part in
Fig. 2(b)). Fig. 2(b) shows the running of DeepPoly under these new bounds, where the
input range and the abstraction of the uncertain ReL U neuron are both refined. Now the
lower bound of y» — y; is 0.25, so DeepPoly successfully verifies the property.

396 P. Yang et al.

r1 > —1 T3 > 11 — T2 y1 >0 1 > —1 T3 > w1 — T2 Y1 > T3
1 <1 3 <x1—22 Y1 <0.5z3+1 1 <0 3 <x1—22 Y1 <0.7523 4 0.25
lh=-1 ls = -2 I5 =0 lh=-1 I3 = —0.333 I5 =0
up =1 uz =2 us = 2 ur =0 uz =1 us =1

@ ReLU(z3) @

@ ReLU(z4) @

@ ReLU(z3) @

@ ReLU(z4) @

o> -1 x4 >x14+22+25 Y2 >34 2> -1 x4 >x14+22+25 Y2 >34
zo <1 x4 <1 +22+ 2.5 Yo < x4 ro < —0.667 x4 < x1 +22+25 Yo < Ty
l2: -1 14205 l6:05 l2: -1 14205 l6:05
U = 1 Ug = 4.5 ue = 4.5 U = —0.667 Uqg = 1.833 ue = 1.833

() (b)

Fig.2. Example 1 (left) and Example 2 (right): where the red parts are introduced through linear
programming based refinement and the blue parts are introduced by a second run of DeepPoly.

4.1 Main algorithm

Alg. 1 presents our algorithm. First we run abstract interpretation to find the uncertain
neurons and the spurious regions (Line 2-5). For each possible spurious region, we have
a while loop which iteratively refines the abstraction. In each iteration we perform linear
programming to renew the bounds of the input neurons and uncertain ReLLU neurons;
when we find that the bound of an uncertain ReLLU neuron becomes definitely non-
negative or non-positive, then the ReLLU behavior of this neuron is renewed (Line 14—
20). We use them to guide abstract interpretation in the next step (Line 21-22). Here in
Line 22, we make sure that during the abstract interpretation, the abstraction of previous
uncertain neurons (namely the uncertain neurons before the linear programming step in
the same iteration) compulsorily follows the new bounds and new ReLU behaviors
given by the current C'>g, C<g, [, and u, where these bounds will not be renewed by
abstract interpretation, and the concretization of Y is defined as

YY) ={z|Vi. V= <z <YZ}N[l,u).)

The while loop ends when (i) either we find that the spurious region is infeasible
(Line 11, 24) and we proceed to refine the next spurious region, with a label Verified
True, (ii) or we reach the terminating condition and fail to rule out this spurious region,
in which case we return UNKNOWN. If every while loop ends with the label Verified
True, we successfully rule out all the spurious regions and return YES. An observation
is that, if some spurious regions have been ruled out, we can add the constraints of their
negation to make the current spurious region smaller so as to improve the precision
(Line 9).

Here we discuss the soundness of Alg. 1. We focus on the while loop and claim that
it has the following loop invariant:

Invariant 1 The abstract element Y over-approximates the intersection of the seman-
tics of f on B (x, 1) and the spurious region, i.e., f(Bso(x,7)) N Spu C v(Y).

Improving Neural Network Verification through Spurious Region Guided Refinement 397

Algorithm 1 Spurious region guided robustness verification

Input:
DNN f, input z, radius r.
Output:
Return “YES” if verified, or “UNKNOWN” otherwise.
1: function VERIFY(f, z, r)
2: Yo — f* (Boo(,7)) > abstract interpretation with DeepPoly
3 Vi 4= {v | v was marked as uncertain in Line 2}
4 A={t|Yon" (yo,@) —ye <0) # L}
5: if A = () then return YES > otherwise A = {t1,..., tr}
6 fori < 1toldo
7 Verified <— False, V «+ V., Y < Y) >denote Y = (Y=,Y= .1, u)
8: Cs0+0,Cco+ 0 > set of new activated/deactivated neurons
9: Spu + (ycf(z) — 1y, <0)A A;;ll(ycf(x) —yi; > 0) > spurious region
10: while terminating condition not satisfied do
11: if Y A Spu is infeasible then
12: Verified <— True
13: break
14: forv e VUV, do > Vo: set of input neurons
15: (ly,uy) < LP(Y A Spu,v)
16: for v € V do
17: if [, > 0 then
18: Cxo + CooU{v}, V < V\ {v}
19: else if v, < 0 then
20: CSO — Cgo @] {’U}, V+«V \ {’U}
21: X Nyeyllo Sv<un}
22: Y <« f#(X) according to Csg, C<q, I, and u
23: V <« {v | v was marked as uncertain in Line 22} \ (C'>o U C<q)
24: if Y N7 (Yo, () — ye;, <0) = L then
25: Verified <— True
26: break
27: if Verified = False then return UNKNOWN

28: return YES

The initialization of Y is f#(Bu.(x,r)) and it is naturally an over-approximation.
The box X is obtained by linear programming on Y A Spu, and f#(X) is calcu-
lated through abstract interpretation and the bounds given by linear programming on
Y A Spu, and thus it remains an over-approximation. It is worth mentioning that, when
we run DeepPoly in Line 22, we are using the bounds obtained by linear programming
to guide DeepPoly, and this may violate the invariant y(a) C [/, u] mentioned in Sect. 3.
Nonotheless, soundness still holds since the concretization of Y is newly defined in
Eq. 2, where both items in the intersection over-approximate f(By (, 7)) N Spu. With
Invarient 1, Alg. 1 returns YES if for any possible spurious region Spu, the over-
approximation of f(Bu.(x,7)) N Spu is infeasible, which implies the soundness of
Alg. 1.

398 P. Yang et al.

4.2 TIterative refinement of the spurious region

Here we present more theoretical insight on the iterative refinement of the spurious
region. An iteration of the while loop in Alg. 1 can be represented as a function £ : A —
A, where A is the DeepPoly domain. An interesting observation is that, the abstract
transformer f7# in the DeepPoly domain is not necessarily increasing, because different
input ranges, even if they have inclusion relation, may lead to different choices of the
abstraction mode of some uncertain ReLLU neurons, which may violate the inclusion
relation of abstraction. We have found such examples during our experiment, which is
illustrated in the following example.

Example 3. Let f(x) = ReLU(x) with input ranges Iy = [—2,1] and I, = [-2,3].
We have f#(I1) = {(z1,22)T € R? | =2 <21 <1, 22 >0, 22 < 1z1 + 2} and
(L) = {(z1,22)T € R? | =2 <2y <3, x> a1, 22 < 231 + L} We observe
(1,0)T € f#(1;) but (1,0)T ¢ f#(I,), which implies that the transformer f# is not
increasing.

This fact also implies that £ is not necessarily increasing, which violates the condition
of Kleene’s Theorem on fixed point [4].

Now we turn to the analysis of the sequence {Y;, = L¥(f#(Boo(z,7)))}32,, where
L' := Land £¥ := £ o £F~! for k > 2. First we have the following lemma showing
that in our settings every decreasing chain S in the DeepPoly domain A has a meet

N* s e A

Lemma 1. Let A,, be the n-dimensional DeepPoly domain and {a'¥)} C A, a de-
(k),<

i

creasing bounded sequence of non-empty abstract elements. If the coefficients in a

> . .
and agk)’* are uniformly bounded, then there exists an abstract element a* € A,, s.t.

Y(a*) = Ni=y 7(a®).
(k)

Remark: The condition that the coefficients in a; = and agk)z are uniformly bounded
are naturally satisfied in our setting, since in a DNN the coefficients and bounds in-
volved have only finitely many values. Readers can refer to [50] for a formal proof.

Lemma 1 implies that if our sequence {Y}} is decreasing, then the iterative refine-
ment converges to an abstract element in DeepPoly, which is the greatest fixed point of
L that is smaller than f# (B4 (x,7)). A sufficient condition for {Y},} being decreasing
is that during the abstract interpretation in every Y}, every initial uncertain neuron main-
tains its abstraction mode, i.e. its corresponding A does not change, before its ReLU
behavior is determined. A weaker sufficient condition for convergence is that change in
abstraction mode of uncertain neurons never happens after finitely many iterations.

If the abstraction mode of uncertain neurons changes infinitely often, generally the
sequence {Y}} does not converge. In this case, we can consider its subsequence in
which every Y}, is obtained with the same abstraction mode. It is easy to see that such
a subsequence must be decreasing and thus have a meet, as it is an accumulative point
of the sequence {Y}}. Since there are only finitely many choices of abstraction modes,
such a accumulative points exists in {Y}}, and there are only finitely many accumu-
lative points. We conclude these results in the following theorem which describes the
convergence behavior of our iterative refinement of the spurious region:

Improving Neural Network Verification through Spurious Region Guided Refinement 399

Theorem 2. There exists a subsequence {Yy,, } of {Yi} s.t. {Y,,} is decreasing and
thus has a meet ﬂ#{Ynk }. Moreover, the set

{ﬂ #{Yo} | {Yo, } is a decreasing subsequence of{Yk}}

is finite, and it is a singleton if exact one abstraction mode of uncertain ReLLU neurons
happens infinitely often.

Proof. Since the abstraction modes of uncertain ReLLU neurons have only finitely many
choices, there must be one which happens infinitely often in the computation of the
sequence {Y}}, and we choose the subsequence {Y7,, } in which every item is computed
through this abstraction mode. Obviously {Y},, } is decreasing and thus has a meet.
For a decreasing subsequence {Y7,, }, we can find its subsequnce in which the ab-
straction mode of uncertain ReLLU neurons does not change, and they have the same
meet. Since there are only finitely many choices of abstraction modes of uncertain
ReLU neurons, such accumulative points of {Y}} also have finitely many values. If
exact one abstraction mode of uncertain ReLLU neurons happens infinitely often, obvi-
ously there is only one accumulative point in {Y}}. O

4.3 Optimizations

In the implementation of our main algorithm, we propose the following optimizations
to improve the precision of refinement.

Optimization 1: More precise constraints in linear programming. In Line 15 of Alg. 1,
it is not the best choice to take the linear constraints in the abstract element Y into linear
programming, because the abstraction of uncertain ReLLU neurons in DeepPoly is not
the best. Planet [10] has a component which gives a more precise linear approximation
for uncertain ReLLU relations, where it uses the linear constraints y < %, y >
x, y > 0 to over-approximate the relation y = ReLU(z) with x € [I,u].

Optimization 2: Priority to work on small spurious regions. In Line 6 of Alg. 1,we
determine the order of refining the spurious regions based on their sizes, i.e., a smaller
region is chosen earlier. This is based on the intuition that Alg. 1 works effectively if the
spurious region is small. After the small spurious regions are ruled out, the constraints of
large spurious regions can be tightened with the conjunction /\;;11 (Yo, (@) — Yt; > 0).
It is difficult to strictly determine which spurious region is the smallest, and thus we
refer to the lower bound of yc, (») — Y, given by DeepPoly, i.e., the larger this lower
bound is, the smaller the spurious region is likely to be, and we perform the for loop in
Line 6 of Alg. 1 in this order.

5 Quantitative Robustness Verification

In this section we recall the notion of quantitative robustness and show how to verify a
quantitative robustness property of a DNN with spurious region guided refinement.

400 P. Yang et al.

In practice, we may not need a strict condition of robustness to ensure that an input x
is not an adversarial example. A notion of mutation testing is proposed in [44,43], which
requires that an input « is normal if it has a low label change rate on its neighbourhood.
They follow a statistical way to estimate the label change rate of an input, which moti-
vates us to give a formal definition of the property showing a low label change rate, and
to consider the verification problem for such a property. Below we recall the definition
of quantitative robustness [27], where we have a parameter 0 < 1 < 1 representing the
confidence of robustness.

Definition 2. Given a DNN Cy : R™ — C, aninputx € R™, 7 > 0,0 <n <1, and
a probability measure i on Boo (2, 1), [is n-robust at x, if

p({a" € Bus(z,7) | Cy(a') = Cy(2)}) 2 n.

Def. 2 has a tight association with label change rate, i.e., if x is n-robust, then the label
change rate should be smaller than, or close to 1 — 7. Hereafter, we set i to be the
uniform distribution on By (z, 7).

It is natural to adapt spurious region guided refinement to quantitative robustness
verification. In Alg. 1, we do not return UNKNOWN when we cannot rule out a spurious
region, but record the volume of the box X as an over-approximation of the Lebesgue
measure of the spurious region. After we work on all the spurious regions, we calculate
the sum of these volume, and obtain a sound robustness confidence. Here we do not
calculate the volume of the spurious region because precise calculation of volume of
a high-dimensional polytope remains open, and we do not choose to use randomized
algorithms because it may not be sound.

We further improve the algorithm through the powerset technique [13]. Powerset
technique is a classical and effective way to enhance the precision of abstract interpre-
tation. We split the input region into several subsets, and run abstract interpretation on
these subsets, In our quantitative robustness verification setting, powerset technique not
only improves the precision, but also accelerates the algorithm in some situations: If the
subsets have the same volume, and the percentage of the subsets on which we may fail
to verify robustness is already smaller than 1 — 7, then we have successfully verified
the n-robustness property.

6 Experimental Evaluation

We implement our approach as a prototype called DeepSRGR. The implementation
is based on a re-implementation of the ReLU and the affine abstract transformers of
DeepPoly in Python 3.7 and we amend it accordingly to implement Alg. 1. We use
CVXPY [8] as our modeling language for convex optimization problems and CBC [18]
as the LP solver. It is worth mentioning that we ignore the floating point error in our
re-implementation of DeepPoly because sound linear programming currently does not
scale in our experiments. In the terminating condition, we set N = 5. The two op-
timizations in Sect. 4.3 are adopted in all the experiments. All the experiments are
conducted on a CentOS 7.7 server with 16 Intel Xeon Platinum 8153 @2.00GHz (16
cores) and 512G RAM, and they use 96 sub-processes concurrently at most. Readers

Improving Neural Network Verification through Spurious Region Guided Refinement 401

can find all the source code and other experimental materials in https://iscasmc.ios.ac.
cn/ToolDownload/?Tool=DeepSRGR.

Datasets. We use MNIST [22] and ACAS Xu [12,17] as the datasets in our experi-
ments. MNIST contains 60 000 grayscale handwritten digits of the size 28 x 28. We can
train DNNSs to classify the images by the written digits on them. The ACAS Xu system
is aimed to avoid airborne collisions for unmanned aircrafts and it uses an observation
table to make decisions for the aircraft. In [19], the observation table is realized by
training DNNS instead of storing it.

Networks. On MNIST, we trained seven fully connected networks of the size 6 x 20,
3 x 50, 3 x 100, 6 x 100, 6 x 200, 9 x 200, and 6 x 500, where m x n refers m
hidden layers and n neurons in each hidden layer, and we name them from FNN2 to
FNNBS, respectively (we also have a small network FNNI1 for testing). On ACAS Xu,
we randomly choose three networks used in [20], all of the size 6 x 50.

6.1 Improvement in precision

First we compare DeepPoly and DeepSRGR in terms of their precision of robustness
verification. We consider the following two indices: (i) the maximum radius that the two
tools can verify, and (ii) the number of uncertain ReLLU neurons whose behaviors can be
further determined by DeepSRGR. For each network, we randomly choose three images
from the MNIST dataset, and calculate their maximum radius that the two tools can ver-
ify through a binary search on the seven FNNs. In column “# uncertin ReLU” we record
the number of the uncertain RelLU neurons when first applying DeepPoly, and also
count how many of them are renewed, namely become definitely activated/deactivated
in later iterations when applying DeepSRGR.

Table 1 shows the results. We can see from Table 1 that DeepSRGR can verity
much stronger (i.e., larger maximum radius) robustness properties than DeepPoly. The
average number of iterations for ruling out a spurious region is 2.875, and about half
of the spurious regions can be ruled out within 2 iterations. DeepSRGR sometimes
determines behaviors of a large proportion of uncertain ReLU neurons on large net-
works: Considering the last picture of the most challenging network FNN8, more than
ninety percent (92.6% = %) of the uncertain neurons are renewed. Improvement
in precision evaluated in this experiment works for verification of both robustness and
quantitative robustness, and this is why our method is effective in both tasks.

6.2 Robustness verification performance

In this setting, we randomly choose 50 samples from the MNIST dataset. We fix four
radii, 0.037, 0.026, 0.021, and 0.015 for the four networks FNN4 — FNN7 respectively,
and verify the robustness property with the corresponding radius on the 50 inputs. The
radius chosen here is very challenging for the corresponding network.

Table 2 presents the results. As we can see, DeepSRGR can verify significantly more
properties than DeepPoly. Linear programming in DeepSRGR takes a large amount of
time in the experiment, and thus DeepSRGR is less efficient (a DeepPoly run takes no

https://iscasmc.ios.ac.cn/ToolDownload/?Tool=DeepSRGR
https://iscasmc.ios.ac.cn/ToolDownload/?Tool=DeepSRGR

402 P. Yang et al.

Maximum radius |# spurious|# uncertain ReLU % renewed # iterations
DeepPoly DeepSRGR| regions |Original Renewed| MAX AVG |MAX GT

0.034 0.047 6 51 38 74.5% 48.4% 5 17

FNN2| 0.017 0.023 3 47 37 78.7% 51.8% 4 9

0.017 0.023 1 34 25 73.5% 73.5% 4 4

0.049 0.066 6 88 69 78.4% 60.9% 5 15

FNN3| 0.025 0.033 7 94 85 90.4% 46.0% 5 18

0.045 0.058 3 98 45 45.1% 27.2% 5 9

0.045 0.060 6 180 102 56.7% 35.2% 5 19

FNN4| 0.024 0.030 6 199 144 72.4% 36.5% 4 15

0.035 0.046 2 155 103 66.5% 42.9% 5 7

0.034 0.042 7 305 245 80.3% 37.8% 5 20

FNN5| 0.016 0.019 5 315 204 64.8% 34.0% 4 14
0.021 0.027 7 337 256 76.0% 34.9% 5 18

0.022 0.026 7 683 271 39.7% 19.8% 4 18

FNN6| 0.011 0.013 6 657 483 73.5% 36.7% 3 14
0.021 0.025 8 723 169 23.4% 12.2% 5 21

0.021 0.023 9 987 297 30.1% 10.0% 5 29

FNN7| 0.010 0.011 5 877 648 73.9% 26.8% 3 11
0.017 0.019 7 913 352 38.6% 24.3% 3 16

0.037 0.044 9 1504 976 64.9% 45.9% 5 36

FNNS| 0.020 0.022 9 1213 818 67.4% 33.3% 3 21
0.033 0.040 9 1371 1269 92.6% 51.1% 5 37

Table 1. Maximum radius which can be verified by DeepPoly and DeepSRGR, and details of
DeepSRGR running on its maximum radius, where in the number of renewed uncertain nuerons,
we show the largest one among the spurious regions. MAX, AVG, and GT means the maximum,
the average, and the grant total among the spurious regions, respectively. The indices of the three
images are 414, 481, and 65 in the MNIST dataset.

more than 100 seconds on FNN7). Furthermore, we again run the 15 running examples
which are not verified by DeepSRGR on FNN4, by resetting the maximum number of
iterations to 20 and 50. We have the following observations:

— Two more properties (out of 15) are successfully verified when we change N to 20.
No more properties can be verified even if we change /N from 20 to 50.

— In this experiment, 13 more spurious regions are ruled out, six of which takes 6
iterations, one takes 7, two takes 8, and the other four takes 13, 22, 27, and 32
iterations, respectively. In these running examples, the average number of renewed
ReLU behaviors is 102.8, and a large proportion are renewed in the last iteration
(47.4% on average). Fig. 3 shows the detailed results.

— As for the 13 spurious regions which cannot be ruled out within 50 iterations, the
average number of renewed ReL U behaviors is only 8.54, which is significantly
lower than the average of the 13 spurious regions which are newly ruled out. In
these running examples, changes in ReLLU behaviors and ReLLU abstraction modes
do not happen after the 9th iteration, and the average number is 4.4.

Improving Neural Network Verification through Spurious Region Guided Refinement 403

. . # verified Time (s)
Model - Size Radius 1 oPoly DeepSRGR ~ MAX ~ AVG
FNN4 3x100 0.037 14 35 3384 781
FNN5 6x100 0.026 19 31 7508 1689
FNN6 6x200 0.021 14 25 23157 6178
FNN7 9x200 0015 25 36 61760 8960

Table 2. The number that DeepPoly and DeepSRGR verifies among the 50 inputs, and the maxi-
mum/average running time of DeepSRGR.

Renewed ReLU in the last iteration

[in the whole loop

Running Examples

160 —

140 —

120 H

100 —

80 —

60

40

20 —

Fig. 3. Number of renewed ReLLU behaviors in the spurious regions newly ruled out.

We observe that, by increasing the termination threshold N from 5 to 50, only two
more properties out of 15 can be verified additionally. This suggests that our method
can effectively identify these spurious regions which are relevant to verification of the
property, in a small number of iterations.

6.3 Quantitative robustness verification on ACAS Xu networks

We evaluate DeepSRGR for quantitative robustness verification on ACAS Xu networks.
We randomly choose five inputs, and compute the maximum robustness radius for each
input on the three networks with DeepPoly through a binary search. In our experiment,
the radius for a running example is the maximum robustness radius plus 0.02, 0.03,
0.04, 0.05, and 0.06. We use the powerset technique and the number of splits is 32. For
DeepPoly, the robustness confidence it gives is the proportion of the splits on which
DeepPoly verifies the property.

Fig. 4 shows the results. We can see that DeepSRGR gives significantly better over-
approximation of 1 —7 than DeepPoly. That is, in more than 90% running examples, our
over-approximation is no more than one half of that given by DeepPoly, and in more
than 75% of the cases, our over-approximation is even smaller than one tenth of that
given by DeepPoly.

404 P. Yang et al.

DeepSRGR
VERIFICATION RADII Robustness Confidence
70 — 002 003 @004 over approximation of 1-1 (%)
0.05 0.06

60 —

50 —

40 —

30

20 —

10 —

0 T T T T i T T T T T

0 10 20 30 40 50 60 70 80 90 100

DeepPoly

Fig. 4. Quantitative robustness verification using DeepPoly and DeepSRGR

7 Related Works and Conclusion

We have already discussed papers mostly related to our paper. Here we add some more
new results. Marabou [21] has been developed as the next generation of Reluplex. Re-
cently, verification approach based on abstraction of DNN models has been proposed
in [11,2]. In addition, alternative approaches based on constraint-solving [26,29,5,25],
layer-by-layer exhaustive search [16], global optimization [31,9,32], functional approx-
imation [47], reduction to two-player games [48,49], and star set abstraction [41,40]
have been proposed as well.

In this work, we propose a spurious region guided refinement approach for robust-
ness and quantitative robustness verification of deep neural networks, where abstract
interpretation calculates an abstraction, and linear programming performs refinement
with the guidance of the spurious region. Our experimental results show that our tool
can significantly improve the precision of DeepPoly, verify more robustness properties,
and often provide a quantitative robustness with strict soundness guarantee.

Abstraction interpretation based framework is quite extensive to different DNN
models, different properties, and incorporate different verification methods. As future
work, we will investigate how to increase the precision further by using more precise
linear over-approximation like [35].

Acknowledgement

This work has been partially supported by Key-Area Research and Development Pro-
gram of Guangdong Province (Grant No. 2018B010107004), National Natural Science
Foundation of China (Grant No. 61761136011, 61836005), Natural Science Foundation
of Guangdong Province, China (Grant No. 2019A1515011689), and the Fundamental
Research Funds for the Zhejiang University NGICS Platform.

Improving Neural Network Verification through Spurious Region Guided Refinement 405

References

10.

11.

12.

. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction: a synergis-

tic approach for analyzing neural network robustness. In: McKinley, K.S., Fisher, K. (eds.)
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 731-744. ACM
(2019)

Ashok, P, Hashemi, V., Kretinsky, J., Mohr, S.: Deepabstract: Neural network abstraction
for accelerating verification. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for
Verification and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam,
October 19-23, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12302, pp. 92—
107. Springer (2020)

Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification for deep
neural networks. CoRR abs/2002.06864 (2020), https://arxiv.org/abs/2002.06864

Baranga, A.: The contraction principle as a particular case of kleene’s fixed point theorem.
Discret. Math. 98(1), 75-79 (1991)

Bunel, R., Lu, J., Turkaslan, I., Torr, PH.S., Kohli, P., Kumar, M.P.: Branch and bound for
piecewise linear neural network verification. J. Mach. Learn. Res. 21, 42:1-42:39 (2020)
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Verification, 12th Inter-
national Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. Lecture
Notes in Computer Science, vol. 1855, pp. 154-169. Springer (2000)

Cousot, P, Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Fourth ACM Symposium on
Principles of Programming Languages (POPL). pp. 238-252 (1977)

Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex opti-
mization. Journal of Machine Learning Research 17(83), 1-5 (2016)

Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedfor-
ward neural networks. In: Dutle, A., Munoz, C.A., Narkawicz, A. (eds.) NASA Formal Meth-
ods - 10th International Symposium, NFM 2018, Newport News, VA, USA, April 17-19,
2018, Proceedings. Lecture Notes in Computer Science, vol. 10811, pp. 121-138. Springer
(2018)

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
15th International Symposium on Automated Technology for Verification and Analysis
(ATVA2017). pp. 269-286 (2017)

Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network
verification. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification - 32nd Interna-
tional Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 12224, pp. 43—65. Springer (2020)

von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision avoid-
ance system. In: Abrahdm, E., Havelund, K. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8413, pp.
620-635. Springer (2014)

. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P, Chaudhuri, S., Vechev, M.: AI*:

Safety and robustness certification of neural networks with abstract interpretation. In: 2018
IEEE Symposium on Security and Privacy (S&P 2018). pp. 948-963 (2018)

Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+. In: International
Conference on Computer Aided Verification. pp. 627-633. Springer (2009)

https://arxiv.org/abs/2002.06864

406

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

P. Yang et al.

Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope intersection.
In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. Lecture Notes in
Computer Science, vol. 6174, pp. 212-226. Springer (2010)

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
In: 29th International Conference on Computer Aided Verification (CAV2017). pp. 3-29
(2017)

Jeannin, J., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki, E., Platzer, A.:
Formal verification of ACAS x, an industrial airborne collision avoidance system. In: Girault,
A., Guan, N. (eds.) 2015 International Conference on Embedded Software, EMSOFT 2015,
Amsterdam, Netherlands, October 4-9, 2015. pp. 127-136. IEEE (2015)

. johnjforrest, Vigerske, S., Santos, H.G., Ralphs, T., Hafer, L., Kristjansson, B., jpfasano, Ed-

winStraver, Lubin, M., rlougee, jpgoncall, h-i gassmann, Saltzman, M.: coin-or/cbc: Version
2.10.5 (Mar 2020)

. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft

collision avoidance systems. CoRR abs/1810.04240 (2018), http://arxiv.org/abs/1810.04240
Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient
SMT solver for verifying deep neural networks. In: 29th International Conference on Com-
puter Aided Verification (CAV2017). pp. 97-117 (2017)

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The marabou framework for
verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) Computer
Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561, pp.
443-452. Springer (2019)

Lécun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998)

Li,J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks with
symbolic propagation: Towards higher precision and faster verification. In: Chang, B.E. (ed.)
Static Analysis - 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11822, pp. 296-319. Springer
(2019)

Li, R, Li, J., Huang, C., Yang, P., Huang, X., Zhang, L., Xue, B., Hermanns, H.: Prodeep: a
platform for robustness verification of deep neural networks. In: Devanbu, P., Cohen, M.B.,
Zimmermann, T. (eds.) ESEC/FSE "20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual Event,
USA, November 8-13, 2020. pp. 1630-1634. ACM (2020)

Lin, W., Yang, Z., Chen, X., Zhao, Q., Li, X., Liu, Z., He, J.: Robustness verification of clas-
sification deep neural networks via linear programming. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp.
11418-11427. Computer Vision Foundation / IEEE (2019)

Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLLU
neural networks. In: KR2018 (2018)

Mangal, R., Nori, A.V., Orso, A.: Robustness of neural networks: A probabilistic and practi-
cal approach. CoRR abs/1902.05983 (2019), http://arxiv.org/abs/1902.05983

Miiller, C., Singh, G., Piischel, M., Vechev, M.T.: Neural network robustness verification on
gpus. CoRR abs/2007.10868 (2020), https://arxiv.org/abs/2007.10868

Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying prop-
erties of binarized deep neural networks. In: Mcllraith, S.A., Weinberger, K.Q. (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the

http://arxiv.org/abs/1810.04240
http://arxiv.org/abs/1902.05983
https://arxiv.org/abs/2007.10868

Improving Neural Network Verification through Spurious Region Guided Refinement 407

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Sympo-
sium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018. pp. 6615-6624. AAAI Press (2018)

Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neu-
ral networks. In: Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings. pp. 243-257 (2010)

Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with
provable guarantees. In: IJCAI2018. pp. 2651-2659 (2018)

Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., Kwiatkowska, M.: Global robustness
evaluation of deep neural networks with provable guarantees for the hamming distance. In:
Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019. pp. 5944-5952. ijcai.org
(2019)

Sheikhtaheri, A., Sadoughi, F., Dehaghi, Z.H.: Developing and using expert systems and
neural networks in medicine: A review on benefits and challenges. J. Medical Syst. 38(9),
110 (2014)

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, 1., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, 1., Lillicrap, T.P., Leach, M., Kavukcuoglu, K., Graepel, T.,
Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature
529(7587), 484-489 (2016)

Singh, G., Ganvir, R., Piischel, M., Vechev, M.T.: Beyond the single neuron convex bar-
rier for neural network certification. In: Wallach, H.M., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, E., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, 8-14 December 2019, Vancouver, BC, Canada. pp. 15072-15083 (2019)

Singh, G., Gehr, T., Mirman, M., Piischel, M., Vechev, M. T.: Fast and effective robustness
certification. In: Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada. pp. 10825-10836 (2018)

Singh, G., Gehr, T., Piischel, M., Vechev, M.T.: An abstract domain for certifying neural
networks. PACMPL 3(POPL), 41:1-41:30 (2019)

Singh, G., Piischel, M., Vechev, M.T.: Fast polyhedra abstract domain. In: Castagna, G.,
Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. pp. 46-59. ACM
(2017)

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. In: International Conference on Learning Repre-
sentations (ICLR2014) (2014)

Tran, H., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional neural net-
works using imagestars. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification -
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 12224, pp. 18—42. Springer (2020)
Tran, H., Lopez, D.M., Musau, P., Yang, X., Nguyen, L.V., Xiang, W., Johnson, T.T.: Star-
based reachability analysis of deep neural networks. In: ter Beek, M.H., Mclver, A., Oliveira,
J.N. (eds.) Formal Methods - The Next 30 Years - Third World Congress, FM 2019, Porto,
Portugal, October 7-11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11800,
pp- 670-686. Springer (2019)

Urmson, C., Whittaker, W.: Self-driving cars and the urban challenge. IEEE Intell. Syst.
23(2), 6668 (2008)

408 P. Yang et al.

43. Wang, J., Dong, G., Sun, J., Wang, X., Zhang, P.: Adversarial sample detection for deep neu-
ral network through model mutation testing. In: 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE). pp. 1245-1256. IEEE (2019)

44. Wang, J., Sun, J., Zhang, P., Wang, X.: Detecting adversarial samples for deep neural net-
works through mutation testing. CoRR abs/1805.05010 (2018), http://arxiv.org/abs/1805.
05010

45. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to assessing neural
network robustness. In: 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019)

46. Weng, L., Chen, P., Nguyen, L.M., Squillante, M.S., Boopathy, A., Oseledets, I.V., Daniel,
L.: PROVEN: verifying robustness of neural networks with a probabilistic approach. In:
Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Proceedings
of Machine Learning Research, vol. 97, pp. 6727-6736. PMLR (2019)

47. Weng, T.W., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Boning, D., Dhillon, L.S., Daniel,
L.: Towards Fast Computation of Certified Robustness for ReLU Networks. In: ICML 2018
(Apr 2018)

48. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep
neural networks. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessa-
loniki, Greece, April 14-20, 2018, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 10805, pp. 408-426. Springer (2018)

49. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based approximate
verification of deep neural networks with provable guarantees. Theor. Comput. Sci. 807,
298-329 (2020)

50. Yang, P, Li, R., Li, J., Huang, C., Wang, J., Sun, J., Xue, B., Zhang, L.: Improving neu-
ral network verification through spurious region guided refinement. CoRR abs/2010.07722
(2020), https://arxiv.org/abs/2010.07722

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://arxiv.org/abs/1805.05010
http://arxiv.org/abs/1805.05010
https://arxiv.org/abs/2010.07722
https://creativecommons.org/licenses/by/4.0/

	ETAPS Foreword
	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Game Theory
	A Game for Linear-time–Branching-time Spectroscopy
	1 Introduction
	2 Preliminaries: HML, Games, and the Spectrum
	2.1 Transition Systems and Hennessy–Milner Logic
	2.2 Games Semantics of HML
	2.3 The Spectrum of Behavioral Equivalences

	3 Distinguishing Formula Games
	3.1 The Formula Preorder Game
	3.2 The Spectroscopy Game
	3.3 Building Distinguishing Formulas from Attacker Strategies
	3.4 Retrieving Cheapest Distinguishing Formulas

	4 A Webtool for Equivalence Spectroscopy
	5 Related Work and Alternatives
	6 Conclusion
	References

	On Satisficing in Quantitative Games
	1 Introduction
	2 Preliminaries
	2.1 Two-player graph games
	2.2 Automata and formal languages

	3 Satisficing via Optimization
	3.1 Satisficing and Optimization
	3.2 VI: Number of iterations
	3.3 Worst-case complexity analysis of VI for optimization
	3.4 Satisficing via value-iteration

	4 Satisficing via Comparators
	4.1 Foundations of comparator automata with threshold v ∈ Q
	4.2 Satisficing via safety and reachability games
	4.3 Implementation and Empirical Evaluation

	5 Adding Temporally Extended Goals
	6 Concluding remarks
	References

	Quasipolynomial Computation of Nested Fixpoints
	1 Introduction
	2 Notation and Preliminaries
	3 Systems of Fixpoint Equations
	4 Fixpoint Games and History-free Witnesses
	5 Solving Equation Systems using Universal Graphs
	6 A Progress Measure Algorithm
	7 Conclusion
	References

	SMT Verification
	A Flexible Proof Format for SAT Solver-Elaborator Communication
	1 Introduction
	2 The FRAT format
	2.1 Flexibility and extensibility

	3 FRAT-producing solvers
	4 Elaboration
	5 Test results
	6 Related works
	7 Conclusion
	References

	Generating Extended Resolution Proofs with a BDD-Based SAT Solver
	1 Introduction
	2 Preliminaries
	2.1 (Extended) Resolution Proofs
	2.2 Binary Decision Diagrams

	3 Proof Generation During BDD Construction
	3.1 Generating BDD Representations of Clauses
	3.2 The APPLYAND Operation
	3.3 Testing Implication

	4 Experimental Results
	4.1 Mutilated Chessboard
	4.2 Pigeonhole Problem
	4.3 Evaluation

	5 Conclusion
	References

	Bounded Model Checking for Hyperproperties
	1 Introduction
	2 Preliminaries
	2.1 Kripke Structures
	2.2 The Temporal Logic HyperLTL

	3 Bounded Semantics for HyperLTL
	3.1 Bounded Semantics
	3.2 The Logical Relation between Different Semantics

	4 Reducing BMC to QBF Solving
	5 Evaluation and Case Studies
	6 Related Work
	7 Conclusion and Future Work
	References

	Counterexample-Guided Prophecy for Model Checking Modulo the Theory of Arrays
	1 Introduction
	2 Background
	3 Using Auxiliary Variables to Assist Induction
	4 Abstraction Refinement for Arrays
	5 Expressiveness and Limitations
	6 Experiments
	7 Related Work
	8 Conclusion
	References

	SAT Solving with GPU Accelerated Inprocessing
	1 Introduction
	2 Preliminaries
	3 GPU Memory and Data Structures
	4 Parallel Garbage Collection
	5 Parallel Inprocessing Procedure
	6 Three-Phase Parallel Variable Elimination
	7 Eager Redundancy Elimination
	8 Experiments
	9 Related Work
	10 Conclusion
	References

	FOREST: An Interactive Multi-tree Synthesizer for Regular Expressions
	1 Introduction
	2 Synthesis Algorithm Overview
	3 Regular Expressions Synthesis
	3.1 Regular Expressions DSL
	3.2 Regex Enumeration
	3.3 Regex Disambiguation

	4 Capturing Groups Synthesis
	4.1 Capturing Groups Enumeration
	4.2 Capture Conditions Synthesis
	4.3 Capture Conditions Disambiguation

	5 Related Work
	6 Experimental Results
	6.1 Comparison with Regel
	6.2 Impact of pruning the search space and splitting examples
	6.3 Multi-tree versus k-tree and line-based encodings
	6.4 Impact of fewer examples

	7 Conclusions and Future Work
	References

	Probabilities
	Finding Provably Optimal Markov Chains
	1 Introduction
	2 Problem Statement
	3 Main Ingredients in a Nutshell
	3.1 The Monotonicity Checker
	3.2 The Parameter Lifter
	3.3 Divide and Conquer

	4 A New Rule for Sufficient Monotonicity
	5 Parameter Lifting with Monotonicity Information
	6 Lifting and Monotonocity, Together
	7 Empirical Evaluation
	8 Conclusion and Future Work
	References

	 Inductive Synthesis for Probabilistic Programs Reaches New Horizons-0.5em
	1 Introduction
	2 Problem Statement
	3 Counterexample-Guided Inductive Synthesis
	4 A Smart Oracle with Counterexamples and Abstraction
	5 Hybrid Dual-Oracle Synthesis
	6 Experimental evaluation
	7 Conclusion
	References

	Analysis of Markov Jump Processes under Terminal Constraints
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Markov Jump Processes with Population Structure
	3.2 Bridging Distribution

	4 Bridge Truncation via Lumping Approximations
	4.1 Finite State Projection
	4.2 State-Space Lumping
	4.3 Iterative Refinement Algorithm

	5 Results
	5.1 Bounding Rare Event Probabilities
	5.2 Mode Switching
	5.3 Recursive Bayesian Estimation

	6 Conclusion
	References

	Multi-objective Optimization of Long-run Average and Total Rewards
	1 Introduction
	2 Preliminaries
	2.1 Markov Automata
	2.2 Reward-based Objectives
	2.3 Markov Decision Processes

	3 Efficient Multi-objective Model Checking
	3.1 Multi-objective Model Checking Queries
	3.2 Approximation of Achievable Points

	4 Optimizing Weighted Combinations of Objectives
	4.1 Pure Long-run Average Queries
	4.2 A Two-phase Approach for Single-objective LRA
	4.3 Combining Long-run Average and Total Rewards

	5 Experimental Evaluation
	6 Conclusion
	References

	Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes
	1 Introduction
	2 Probabilistic Integer Programs
	3 Complexity Bounds
	3.1 Runtime and Size Bounds
	3.2 Expected Runtime and Size Bounds

	4 Computing Expected Runtime Bounds
	4.1 Probabilistic Linear Ranking Functions
	4.2 Inferring Expected Runtime Bounds

	5 Computing Expected Size Bounds
	5.1 Local Change Bounds and General Result Variable Graph
	5.2 Inferring Expected Size Bounds

	6 Related Work, Implementation, and Conclusion
	References

	 Probabilistic and Systematic Coverage of Consecutive Test-Method Pairs forDetecting Order-Dependent Flaky Tests
	1 Introduction
	2 Background and Example
	3 Preliminaries
	3.1 Dataset for Evaluation

	4 Analysis of Flake Rate and Simple Algorithm Change
	4.1 Determining Test Outcome without Running a Test Order
	4.2 Computing Flake Rate
	4.3 Comparing Flake Rate for Different Sets of Test Orders
	4.4 Simple Change to Increase Probability of Detecting OD Tests

	5 Generating Test Orders to Cover Test Pairs
	5.1 Special Case: All Orders are Class-Compatible
	5.2 General Case

	6 Conclusion
	Acknowledgments
	References

	Timed Systems
	Timed Automata Relaxation for Reachability
	1 Introduction
	2 Preliminaries and Problem Formulation
	2.1 Timed Automata
	2.2 Timed Automata Relaxations and Reductions
	2.3 Problem Statement

	3 Minimal Sufficient (D,I)-Reductions
	3.1 Base Scheme For Computing a Minimum MSR
	3.2 Shrinking a Seed
	3.3 Finding a Seed
	3.4 Representation of I and C

	4 Synthesis of Relaxation Parameters
	5 Case Study
	References

	Iterative Bounded Synthesis for Efficient Cycle Detection in Parametric Timed Automata
	1 Introduction
	2 PTA, Parametric Zone Graphs and Accepted Runs
	3 Sound and Complete Liveness Parameter Synthesis
	3.1 Soundness and Completeness

	4 Semi-Algorithms for Liveness Parameter Synthesis
	4.1 Nested Depth-First Search with Enhancements
	4.2 Breadth-First Search
	4.3 Bounded Synthesis with Iterative Deepening

	5 Experimental Evaluation
	6 Case Study: the Bounded Retransmission Protocol
	6.1 Synthesis for Reachability Properties: deriving sharper bounds
	6.2 Liveness: approximations by bounded synthesis
	6.3 Proper Liveness Properties

	7 Conclusion
	References

	Algebraic Quantitative Semantics for Efficient Online Temporal Monitoring
	1 Introduction
	2 Algebraic Semantics using Semirings
	3 Symbolic Quantitative Traces and Languages
	4 Relationship with robust semantics
	5 Online Monitoring
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	References

	Neural Networks
	Synthesizing Context-free Grammars from Recurrent Neural Networks
	1 Introduction
	2 Definitions and Notations
	2.1 Deterministic Finite Automata
	2.2 Dyck Languages

	3 Patterns
	3.1 Pattern Composition

	4 Pattern Rule Sets
	4.1 Examples

	5 PRS Inference Algorithm
	5.1 Deviations from the PRS framework

	6 Converting a PRS to a CFG
	7 Experimental results
	7.1 Methodology
	7.2 Generating a sequence of DFAs
	7.3 Languages
	7.4 Results

	8 Related work
	9 Future Directions
	References

	Automated and Formal Synthesis of Neural Barrier Certificates for Dynamical Models
	1 Introduction
	2 Safety Analysis with Barrier Certificates
	3 Synthesis of Neural Barrier Certificates via Learning and Verification
	3.1 Training of the Barrier Neural Network
	3.2 Certification of the Barrier Neural Network, or Falsification via Counter-examples

	4 Case Studies and Experimental Results
	5 Conclusions and Future Work
	References

	Improving Neural Network Verification through Spurious Region Guided Refinement
	1 Introduction
	2 Preliminaries
	2.1 Robustness verification of deep neural networks
	2.2 Abstract interpretation for DNN verification

	3 A Brief Introduction to DeepPoly
	4 Spurious Region Guided Refinement
	4.1 Main algorithm
	4.2 Iterative refinement of the spurious region
	4.3 Optimizations

	5 Quantitative Robustness Verification
	6 Experimental Evaluation
	6.1 Improvement in precision
	6.2 Robustness verification performance
	6.3 Quantitative robustness verification on ACAS Xu networks

	7 Related Works and Conclusion
	Acknowledgement
	References

	Analysis of Network Communication
	Resilient Capacity-Aware Routing
	1 Introduction
	2 Network with Capacities and Demands
	3 Analysis of Algorithmic Complexity
	4 A Fast Strategic Search Algorithm
	5 Experiments
	6 Conclusion
	References

	Network Traffic Classification by Program Synthesis
	1 Introduction
	2 Overview
	3 Background on NetQRE
	4 Synthesis Algorithm
	4.1 Overview
	4.2 Partial Execution
	4.3 Merge Search

	5 Evaluation
	5.1 Data Preparation
	5.2 Learning Accuracy
	5.3 Post-processing and Interpretation
	5.4 Deployment Scenarios
	5.5 Program Synthesis Performance

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

	General Decidability Results for Asynchronous Shared-Memory Programs: Higher-Order and Beyond
	1 Introduction
	2 Preliminaries
	3 Decision Problems on Asynchronous Programs
	4 General Decidability Results
	4.1 Safety and termination
	4.2 Boundedness
	4.3 Configuration reachability and liveness properties

	5 Higher-Order Asynchronous Programs
	References

	Author Index

